KNOWLEDGE ACQUISITION

MODELING THROUGH DIALOGUE
BETWEEN COGNITIVE AGENTS

Mehdi Yousfi-Monod, Violaine Prince

LIRMM, UMR 5506
161 rue Ada
34392 Montpellier Cedex 5 - France
{yousfi,prince}@lirmm.fr

Rl
s

LIRMM

May 26th, 2005

http://www.lirmm.fr
http://www.cnrs.fr
http://www.univ-montp2.fr

Synopsis

Synopsis

@ Purpose

@ Knowledge acquisition between agents
@ Our dialogical agents modellisation

@ Architecture and implementation

@ Conclusion, perspectives

Purpose

Purpose

@ defining a set of knowledge acquisition algorithms

Purpose

Purpose

@ defining a set of knowledge acquisition algorithms

@ using only dialogue to acquire knowledge

Purpose

Purpose

@ defining a set of knowledge acquisition algorithms
@ using only dialogue to acquire knowledge

@ being in a teacher-student situation

Purpose

Purpose

@ defining a set of knowledge acquisition algorithms
@ using only dialogue to acquire knowledge
@ being in a teacher-student situation

@ using of socratic dialogues

Purpose

Purpose

defining a set of knowledge acquisition algorithms
using only dialogue to acquire knowledge

°
°
@ being in a teacher-student situation
@ using of socratic dialogues

°

belief revision and reasoning

Purpose

Purpose

defining a set of knowledge acquisition algorithms
using only dialogue to acquire knowledge

being in a teacher-student situation

using of socratic dialogues

belief revision and reasoning

using of the first-order predicate logic (with functions) for
their knowledge bases (KB)

Purpose

Purpose

defining a set of knowledge acquisition algorithms
using only dialogue to acquire knowledge

being in a teacher-student situation

using of socratic dialogues

belief revision and reasoning

using of the first-order predicate logic (with functions) for
their knowledge bases (KB)

allowing the student to question the teacher about
unkown predicates or functions before revising its KB

Knowledge acquisition
°

Points 1/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

Knowledge acquisition
°

Scheme

Modelling of our communicating agents

Cognitive agent

Knowledge base

human(x) — smart(x)
mortal(x) — live(x)

lesson to teach
human(x) — mortal(x)
human(John)
human(Mary)

human(x) — not(bird(x))
animal(x) — living(x)
animal(titi)

Knowledge acquisition
°

Scheme

Modelling of our communicating agents

Cognitive agent

Model of itself

KnOW|edge base depends on the task and the competences
Role: Teacher or Student

Goal: Teach a lesson or Learn a
lesson

human(x) — smart(x)
mortal(x) — live(x)

lesson to teach
human(x) — mortal(x)
human(John)
human(Mary)
human(x) — not(bird(x))
animal(x) — living(x)
animal(titi)

Knowledge acquisition
°

Scheme

Modelling of our communicating agents

Cognitive agent

Knowledge base

Model of itself

human(x) — smart(x)
mortal(x) — live(x)

lesson to teach
human(x) — mortal(x)
human(John)
human(Mary)

depends on the task and the competences
Role: Teacher or Student
Goal: Teach a lesson or Learn a
lesson

Model of the interlocutor

human(x) — not(bird(x))
animal(x) — living(x)
animal(titi)

Identity

Characteristics

Model of its KB
mortal(x) — live(x)
human(Peter)

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

@ Learning methods

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

@ Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

@ Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

@ Dialogue models

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

@ Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

@ Dialogue models
— P. Cohen, H. Levesque, 1992

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents
@ Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

@ Dialogue models
— P. Cohen, H. Levesque, 1992
— J.L. Austin, 1975

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

@ Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

@ Dialogue models
— P. Cohen, H. Levesque, 1992
— J.L. Austin, 1975
— M. E. Pollack, 1998

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

@ Modelling of our communicating cognitive agents

@ Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

@ Dialogue models
— P. Cohen, H. Levesque, 1992
— J.L. Austin, 1975
— M. E. Pollack, 1998
— G. Sabah et al, 1998

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

Modelling of our communicating cognitive agents

Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

Dialogue models
— P. Cohen, H. Levesque, 1992
— J.L. Austin, 1975
— M. E. Pollack, 1998
— G. Sabah et al, 1998

Reasoning

Knowledge acquisition
°

Points 2/2

Knowledge acquisition between agents

Modelling of our communicating cognitive agents

Learning methods
— A. Ravenscroft, R.M. Pilkington, 2000

Dialogue models
— P. Cohen, H. Levesque, 1992
— J.L. Austin, 1975
— M. E. Pollack, 1998
— G. Sabah et al, 1998

Reasoning
— J.R. Josephson, S.G. Josephson, 1994

Our approach
.

Points 1/2

Our approach

@ KB specifications

Our approach
.

Points 1/2

Our approach

@ KB specifications
e bootstrap

Our approach
.

Points 1/2

Our approach

@ KB specifications

e bootstrap
e Connexity

Our approach
°

Connexity

The connexity notion

A connex KB

t(z) A p(x) = aly)
r(x) = a(y)
(x) = r(y)
)
)

n

(
(

The corresponding graph

> Q
o o

t(z) A p(x) —4q(y)

Our approach
°

Connexity

The connexity notion

A connex KB
t(z) A p(x) — q(y)
r(x) — q(y)
s(x) — r(y)

q(a)

r(b)

The corresponding graph

t(z) A p(x) —q(y)

r(x)—aly)

Our approach
°

Connexity

The connexity notion

A connex KB

t(z) A p(x) — q(y)
r(x) — q(y)
(x) = r(y)
)
)

%)

(
(

The corresponding graph

Q
o o

<

t(z) A p(x) —4q(y)

Our approach
°

Connexity

The connexity notion

A connex KB

t(z) A p(x) — q(y)
r(x) — q(y)
(x) = r(y)
)
)

n

(
(

The corresponding graph

Q
o o

<

t(z) A p(x) —q(y)

Our approach
°

Connexity

The connexity notion

A connex KB

t(z) A p(x) — q(y)
r(x) — q(y)
(x) = r(y)
)
)

n

(
(

The corresponding graph

Q
T o

B

Connexity

The connexity notion

Our approach
°

A connex KB A non connex KB
t(z) A p(x) — q(y) t(z) A p(x) — q(y)
r(x) — q(y) r(x) — q(y)
s(x) — r(y) s(x) — u(y)

q(a) q(a)

r(b) u(b)

The corresponding graph

The corresponding graph

t(2) A p(x)

t(z) A p(x) —ql(y)

Connexity

The connexity notion

Our approach
°

A connex KB A non connex KB
t(z) A p(x) — aly) t(z) A p(x) — qly)
r(x) — q(y) r(x) — q(y)
s(x) — r(y) s(x) — u(y)

q(a) q(a)

r(b) u(b)

The corresponding graph

The corresponding graph

t(2) A p(x)

t(z) A p(x) —qly)

r(x) —aly)

Our approach
°

Connexity

The connexity notion

A connex KB A non connex KB
t(z) A p(x) — aly) t(z) A p(x) — qly)
r(x) — q(y) r(x) — q(y)
s(x) — r(y) s(x) — u(y)

q(a) q(a)

r(b) u(b)

The corresponding graph

The corresponding graph

t(z) A p(x) —ql(y)

r(x) —aly)

s(x) —uly)

Our approach
°

Connexity

The connexity notion

A connex KB A non connex KB
t(z) A p(x) — aly) t(z) A p(x) — qly)
r(x) — q(y) r(x) — q(y)
s(x) — r(y) s(x) — u(y)

q(a) q(a)

r(b) u(b)

The corresponding graph

The corresponding graph

t(z) A P(X) q(a)

r(x) —aly)

s(x) —uly)

Our approach
°

Connexity

The connexity notion

A connex KB A non connex KB
t(z) A p(x) — aly) t(z) A p(x) — qly)
r(x) — q(y) r(x) — q(y)
s(x) — r(y) s(x) — u(y)

q(a) q(a)

r(b) u(b)

The corresponding graph

s(x) —u(y) u(b)

Our approach
°

Points 2/2

Our approach

@ KB specifications

@ the fonctional roles as modeller

Our approach
°

Points 2/2

Our approach

o KB specifications

@ the fonctional roles as modeller
© give-knowledge

Our approach
°

Points 2/2

Our approach

o KB specifications

@ the fonctional roles as modeller

@ give-knowledge
— give-knowledge(cat(x) — mortal(x)): " Cats are mortal.”

Our approach
°

Points 2/2

Our approach

o KB specifications

@ the fonctional roles as modeller

@ give-knowledge
@ askfor/give-information

Our approach
°

Points 2/2

Our approach

o KB specifications

@ the fonctional roles as modeller
@ give-knowledge
@ askfor/give-information
— askfor-information(cat(Folley)): "Is Folley a cat?”

Our approach
°

Points 2/2

Our approach

e KB specifications

@ the fonctional roles as modeller
@ give-knowledge
@ askfor/give-information
— askfor-information(cat(Folley)): "Is Folley a cat?"
— give-information(true): " Yes."

Our approach
°

Points 2/2

Our approach

o KB specifications

@ the fonctional roles as modeller
@ give-knowledge
@ askfor/give-information
© give-explanation (predicate case)

Our approach
°

Points 2/2

Our approach

e KB specifications

@ the fonctional roles as modeller
@ give-knowledge
@ askfor/give-information
© give-explanation (predicate case)
— give-explanation(cat(x) < (animal(x) A pet(x))):
"A cat is a pet animal.”

Our approach
°

Points 2/2

Our approach

o KB specifications

@ the fonctional roles as modeller
@ give-knowledge
@ askfor/give-information
© give-explanation (predicate case)
@ say-(dis)satisfaction

Our approach
°

Points 2/2

Our approach

@ KB specifications
@ the fonctional roles as modeller

@ the tutored learning

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning
e the fundamental axioms

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

e the fundamental axioms
— Z. Manna, 1974

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

o the fundamental axioms
e FR interpretation axioms

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

o the fundamental axioms

e FR interpretation axioms
e the curious students

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

o the fundamental axioms

e FR interpretation axioms
o the curious students

© enlarge the base of one of their predicate

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

e the fundamental axioms
e FR interpretation axioms
e the curious students
© enlarge the base of one of their predicate
— learns p(a), knows g(a), then ask if g(x) — p(x)

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

e the fundamental axioms

e FR interpretation axioms

e the curious students
© enlarge the base of one of their predicate
@ increase its KB connexity

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

e the fundamental axioms

e FR interpretation axioms

e the curious students
© enlarge the base of one of their predicate
@ increase its KB connexity
© learn new terms

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller

@ the tutored learning

e the fundamental axioms
e FR interpretation axioms
e the curious students
© enlarge the base of one of their predicate
@ increase its KB connexity
© learn new terms
© understand implications

Our approach
°

Points 2/2

Our approach

e KB specifications
@ the fonctional roles as modeller
@ the tutored learning

e the fundamental axioms

e FR interpretation axioms
e the curious students

© enlarge the base of one of their predicate
@ increase its KB connexity
© learn new terms
© understand implications
— knows g(x) — p(x), asks if g(x) — 7 — p(x)

Our approach
°

Points 2/2

Our approach

@ KB specifications

@ the fonctional roles as modeller

@ the tutored learning

@ the knowledge derivation strategies

Our approach
°

Points 2/2

Our approach

o KB specifications
@ the fonctional roles as modeller
@ the tutored learning

@ the knowledge derivation strategies
@ lesson strategies

Our approach
°

Points 2/2

Our approach

o KB specifications
@ the fonctional roles as modeller
@ the tutored learning

@ the knowledge derivation strategies

@ lesson strategies
@ dialogue strategies

Our approach
°

Points 2/2

Our approach

o KB specifications
@ the fonctional roles as modeller
@ the tutored learning

@ the knowledge derivation strategies

@ lesson strategies
@ dialogue strategies
@ the socratic method for the teacher

Our approach
°

Points 2/2

Our approach

o KB specifications
@ the fonctional roles as modeller
@ the tutored learning

@ the knowledge derivation strategies

@ lesson strategies
@ dialogue strategies
@ the socratic method for the teacher

© local strategies

Our approach
°

Points 2/2

Our approach

o KB specifications
@ the fonctional roles as modeller
@ the tutored learning

@ the knowledge derivation strategies

@ lesson strategies
@ dialogue strategies
@ the socratic method for the teacher
© local strategies
o the conflict management for the student

Architecture, Implementation
.

Points 1/3

Architecture, Implementation

@ General architecture

Architecture, Implementation
°

Scheme

Architecture

World Teacher Agent

Str ategies . Knowledge Model of oneself
. Functional base
Dialogue : Rol
Explain a predicate oles
Explain an implication Lesson to .
be taught Student’s Model
Local:
Conflicts management |~ Student Agent

o Knowledge Model of oneself
base
Lessons :

Learning /
Teacher’s Model

Teaching

Architecture, Implementation
°

Points 2/3

Architecture, Implementation

@ General architecture

@ Implementation

Architecture, Implementation
°

Diagram class

Diagram class

«xnous CognitiveAgent [~ tives in>
World

1 1
- +o0)
Strategies Teacher +bootstrap ()
1 . +sendMessage (agent, message)
Student
+DialogueStrategyl () N
+DialogueStrategy2 ()
usesP

o0 knows P

+LessonStrategyl () Teaches P

+LessonStrategy2 ()

+en)

1

+LocalStrategyl () - i KnowledgeBase

+LocalStrategy2 () FunctionalRoles |

0 uses » +formulas
+ask—for-knowledge (F) +addImplication (i)
+give-knowledge (F) +addFact (f)
+ask-for-information (F) +delImplication (i)
+give-information (F) +delFact (£)
o0 +hasImplication (i)
+say-satisfaction() +hasFact (f)
+say-dissatisfaction () FU)

Architecture, Implementation
°

Points 3/3

Architecture, Implementation

@ General architecture
@ Implementation

@ An example: a conflict management

Architecture, Implementation
°
Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x)

human(x) — reproduce(x)

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Architecture, Implementation
°
Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))
Student - say-satisfaction()

Architecture, Implementation
°
Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living_being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))
Student - say-satisfaction()
Teacher - give-knowledge(human(x) — living _being(x))

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))
Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))
Student - say-satisfaction()

Example

Architecture, Implementation
°

Example: a conflict management

Teacher’'s KB:

Student’'s KB:

living _being(x) — reproduce(x)
animal(x) — living _being(x)
human(x) — mortal(x)
human(x) — living _being(x)
human(x) — reproduce(x)

human(x) — animal(x)

animal(x) — living_being(x)
living_being(x) — not(reproduce(x))
human(x) — mortal(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))

Architecture, Implementation
°
Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)

Student - ask-for-information(animal(x) — living _being(x))

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living_being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)

Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information(True)

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living_being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))
Student - say-satisfaction()
Teacher - give-knowledge(human(x) — living_being(x))
Student - say-satisfaction()
Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)
Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information(True)
Student - ask-for-information(living _being(x) — not(reproduce(x)))

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living_being(x) — reproduce(x) human(x) — animal(x)

animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) living _being(x) — not(reproduce(x))
human(x) — living _being(x) human(x) — mortal(x)

human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)

Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information(True)

Student - ask-for-information(living _being(x) — not(reproduce(x)))
Teacher - give-information(False)

Example

Architecture, Implementation
°

Example: a conflict management

Teacher’'s KB:

Student’'s KB:

living _being(x) — reproduce(x)
animal(x) — living _being(x)
human(x) — mortal(x)
human(x) — living _being(x)
human(x) — reproduce(x)

human(x) — animal(x)
animal(x) — living_being(x)

huma;(x) — mortal(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))

Teacher - give-information(Unknown)

Student - ask-for-information(animal(x) — living_being(x))

Teacher - give-information(True)

Student - ask-for-information(living _being(x) — not(reproduce(x)))

Teacher - give-information(False)

Architecture, Implementation
°

Example

Example: a conflict management

Teacher’'s KB: Student’s KB:

living _being(x) — reproduce(x) human(x) — animal(x)
animal(x) — living _being(x) animal(x) — living_being(x)
human(x) — mortal(x) jving-bei

human(x) — living _being(x) human(x) — mortal(x)
human(x) — reproduce(x) human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)

Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information(True)

Student - ask-for-information(living _being(x) — not(reproduce(x)))
Teacher - give-information(False)

Example

Architecture, Implementation
°

Example: a conflict management

Teacher’'s KB:

Student’'s KB:

living _being(x) — reproduce(x)
animal(x) — living _being(x)
human(x) — mortal(x)

X

human(x) — animal(x)
animal(x) — living_being(x)

huma;(x) — mortal(x)

)
human(x) — living _being(x)
)

human(x) — reproduce(x) human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)
Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information(True)
Student - ask-for-information(living _being(x) — not(reproduce(x)))
Teacher - give-information(False)

Student - say-satisfaction()

Conclusion

Conclusion, perspectives 16

@ Conclusions

Dialogue: efficient learning method
Introduced notion: the Connexity of a KB
The Functional Roles theory as modeller
The potential of curious students

Use of strategies to derive knowledge

@ Perspectives
e enrich the formulas type
o define new strategies
e use our learning method in conjunction with other
methods

	Title
	Synopsis
	Purpose
	Knowledge acquisition
	Points 1/2
	Scheme
	Points 2/2

	Our approach
	Points 1/2
	Connexity
	Points 2/2

	Architecture, Implementation
	Points 1/3
	Scheme
	Points 2/3
	Diagram class
	Points 3/3
	Example

	Conclusion

