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defining a set of knowledge acquisition algorithms
using only dialogue to acquire knowledge

being in a teacher-student situation

using of socratic dialogues

belief revision and reasoning

using of the first-order predicate logic (with functions) for
their knowledge bases (KB)

allowing the student to question the teacher about
unkown predicates or functions before revising its KB
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Scheme

Modelling of our communicating agents

Cognitive agent

Knowledge base

Model of itself

human(x) — smart(x)
mortal(x) — live(x)

lesson to teach
human(x) — mortal(x)
human(John)
human(Mary)

depends on the task and the competences
Role: Teacher or Student
Goal: Teach a lesson or Learn a
lesson

Model of the interlocutor

human(x) — not(bird(x))
animal(x) — living(x)
animal(titi)

Identity

Characteristics

Model of its KB
mortal(x) — live(x)
human(Peter)
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— P. Cohen, H. Levesque, 1992
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— G. Sabah et al, 1998

Reasoning
— J.R. Josephson, S.G. Josephson, 1994
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Our approach

e KB specifications

@ the fonctional roles as modeller
@ give-knowledge
@ askfor/give-information
© give-explanation (predicate case)
— give-explanation(cat(x) < (animal(x) A pet(x))):
"A cat is a pet animal.”
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© give-explanation (predicate case)
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e KB specifications
@ the fonctional roles as modeller
@ the tutored learning

e the fundamental axioms

e FR interpretation axioms
e the curious students

© enlarge the base of one of their predicate
@ increase its KB connexity
© learn new terms
© understand implications
— knows g(x) — p(x), asks if g(x) — 7 — p(x)
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o KB specifications
@ the fonctional roles as modeller
@ the tutored learning

@ the knowledge derivation strategies

@ lesson strategies
@ dialogue strategies
@ the socratic method for the teacher
© local strategies
o the conflict management for the student
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Scheme

Architecture

World Teacher Agent

Str ategies . Knowledge Model of oneself
. Functional base
Dialogue : Rol
Explain a predicate oles
Explain an implication Lesson to .
be taught Student’s Model
Local:
Conflicts management |~ Student Agent

o Knowledge Model of oneself
base
Lessons :

Learning /
Teacher’s Model

Teaching
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Diagram class

Diagram class

«xnous CognitiveAgent [~ tives in>
World

1 1
- +o0)
Strategies Teacher +bootstrap ()
1 . +sendMessage (agent, message)
Student
+DialogueStrategyl () N
+DialogueStrategy2 ()
usesP

o0 knows P

+LessonStrategyl () Teaches P

+LessonStrategy2 ()

+en )

1

+LocalStrategyl () - i KnowledgeBase

+LocalStrategy2 () FunctionalRoles |

0 uses » +formulas
+ask—for-knowledge (F) +addImplication (i)
+give-knowledge (F) +addFact (f)
+ask-for-information (F) +delImplication (i)
+give-information (F) +delFact (£)
o0 +hasImplication (i)
+say-satisfaction() +hasFact (f)
+say-dissatisfaction () FU)
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Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)

Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information( True)

Student - ask-for-information(living _being(x) — not(reproduce(x)))
Teacher - give-information(False)
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Example: a conflict management

Teacher’'s KB:

Student’'s KB:

living _being(x) — reproduce(x)
animal(x) — living _being(x)
human(x) — mortal(x)

X

human(x) — animal(x)
animal(x) — living_being(x)

huma;(x) — mortal(x)

)
human(x) — living _being(x)
)

human(x) — reproduce(x) human(x) — reproduce(x)

Teacher - give-knowledge(human(x) — mortal(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — living_being(x))

Student - say-satisfaction()

Teacher - give-knowledge(human(x) — reproduce(x))
Student - ask-for-information(human(x) — animal(x))
Teacher - give-information(Unknown)
Student - ask-for-information(animal(x) — living_being(x))
Teacher - give-information( True)
Student - ask-for-information(living _being(x) — not(reproduce(x)))
Teacher - give-information(False)

Student - say-satisfaction()
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@ Conclusions

Dialogue: efficient learning method
Introduced notion: the Connexity of a KB
The Functional Roles theory as modeller
The potential of curious students

Use of strategies to derive knowledge

@ Perspectives
e enrich the formulas type
o define new strategies
e use our learning method in conjunction with other
methods
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